Influence of ENSO on the west African monsoon Temporal aspects and atmospheric processes

M. Joly, A. Voldoire, and F. Chauvin

CNRM Météo-France

Conference on African Drought Trieste, June 2008

At the **interannual** time-scale, the west African monsoon (WAM) interacts with 3 main oceanic modes:

At the **interannual** time-scale, the west African monsoon (WAM) interacts with 3 main oceanic modes:

- The El Niño Southern Oscillation (ENSO),
- The Atlantic zonal mode (or "Atlantic Niño"),
- Mediterranean summer SST anomalies.

At the **interannual** time-scale, the west African monsoon (WAM) interacts with 3 main oceanic modes:

- The El Niño Southern Oscillation (ENSO),
- The Atlantic zonal mode (or "Atlantic Niño"),
- Mediterranean summer SST anomalies.

Maximum Covariance Analysis

WAM rainfall (CRU) & Tropical SST (HadISST) (filtered 1951-2002 JAS anomalies)

SCF = 87% P-var = 24% SST-var = 56% Corr = 0.76 In **Joly et al. (2007)**, we show that SST–WAM teleconnections are quite different from one model to another:

The question is...

Why is the ENSO teleconnection simulated in state-of-the-art **coupled models** so different from the observed one?

Outline

1 The observed ENSO teleconnection

Outline

- 1 The observed ENSO teleconnection
- 2 The ENSO teleconnection in IPCC-AR4 simulations

Selecting appropriate years

Selecting appropriate years

TELECONNECTION =

WAM RAINFALL ANOMALY (of the opposite sign)

Selecting appropriate years

Selecting appropriate years

TELECONNECTION =

WAM RAINFALL ANOMALY (of the opposite sign)

Selecting appropriate years...

SST anomalies in the equatorial Pacific influence the WAM:

Selecting appropriate years...

SST anomalies in the equatorial Pacific influence the WAM:

• At the **beginning** of some ENSO events (5 Niño & 4 Niña)

Selecting appropriate years...

SST anomalies in the equatorial Pacific influence the WAM:

- At the **beginning** of some ENSO events (5 Niño & 4 Niña)
- During the decay of long-lasting La Niña events (4 Niña)

Selecting appropriate years...

SST anomalies in the equatorial Pacific influence the WAM:

- At the **beginning** of some ENSO events (5 Niño & 4 Niña)
- During the decay of long-lasting La Niña events (4 Niña)

The temporal evolution of Pacific SST anomalies seems essential.

Selecting appropriate years

Selecting appropriate years...

SST anomalies in the equatorial Pacific influence the WAM:

- At the **beginning** of some ENSO events (5 Niño & 4 Niña)
- During the decay of long-lasting La Niña events (4 Niña)

The temporal evolution of Pacific SST anomalies seems essential.

▶ What are the mechanisms of the rapid teleconnection that takes place at the beginning of ENSO events?

LAtmospheric mechanisms

(Niño-Niña) JAS composite anomalies

LAtmospheric mechanisms

(Niño-Niña) JAS composite anomalies

1) The Walker circulation

▶ Modulation of the large-scale subsidence over Africa.

1) The Walker circulation

▶ Modulation of the TEJ.

2) Temperature anomalies

- The observed teleconnection
 - LAtmospheric mechanisms

2) Temperature anomalies

LAtmospheric mechanisms

3) Geopotential anomalies

Atmospheric mechanisms...

- Changes in the Walker circulation over the Pacific
 - ▶ Modulation of the large-scale subsidence
 - ▶ Modulation of the TEJ

Atmospheric mechanisms...

- Changes in the Walker circulation over the Pacific
 - ▶ Modulation of the large-scale subsidence
 - ▶ Modulation of the TEJ
- Kelvin stationary wave in the high-troposphere
 - ▶ Temperature & Geopotential anomalies

Atmospheric mechanisms...

- Changes in the Walker circulation over the Pacific
 - ▶ Modulation of the large-scale subsidence
 - ▶ Modulation of the TEJ
- Kelvin stationary wave in the high-troposphere
 Temperature & Geopotential anomalies
- Geopotential anomaly in the low-troposphere
 Modulation of the monsoon flow (not shown)

- 1 The observed ENSO teleconnection Selecting appropriate years Atmospheric mechanisms
- 2 The ENSO teleconnection in IPCC-AR4 simulations

▷ In the observations, most of the ENSO events start in AMJ, before the monsoon season.

1) Onset of ENSO events

▷ In 5 simulations, there is no marked peak in the distribution.

⊳ In 2 simulations, ENSO events appear in spring.

▷ In the 9 remaining simulations, the peak arises later than in the observations.

Onset of ENSO events...

In the models, the timing of ENSO onsets can be quite different from the observations:

└─IPCC-AR4 coupled simulations

Onset of ENSO events

Onset of ENSO events...

In the models, the timing of ENSO onsets can be quite different from the observations :

 In most models, ENSO onsets are late compared to the observed record,

Onset of ENSO events...

In the models, the timing of ENSO onsets can be quite different from the observations :

- In most models, ENSO onsets are late compared to the observed record.
- 4 models show a striking Niño/Niña dissymmetry (not shown).

☐ IPCC-AR4 coupled simulations

Time-lag of the atmospheric response over Africa

2) Time-lag of the atmospheric response over Africa

Time-lag of the atmospheric response over Africa

2) Time-lag of the atmospheric response over Africa

Lag-correlations : ENSO index vs Geopotential over Africa

Time-lag of the atmospheric response over Africa

Time-lag of the atmospheric response over Africa...

At 850hPa, the response can be very different from one model to another:

Time-lag of the atmospheric response over Africa

Time-lag of the atmospheric response over Africa...

At 850hPa, the response can be very different from one model to another:

• In 2 models, there is no significant signal,

Time-lag of the atmospheric response over Africa

Time-lag of the atmospheric response over Africa...

At 850hPa, the response can be very different from one model to another:

- In 2 models, there is no significant signal,
- In 7 simulations, the response is slower (at least 2 months) than in the reanalyses.

Time-lag of the atmospheric response over Africa

2) Time-lag of the atmospheric response over Africa

Lag-correlations : ENSO index vs Geopotential over Africa

Time-lag of the atmospheric response over Africa

Time-lag of the atmospheric response over Africa...

At 200hPa, simulations show less spread than at 850hPa, but the response is often slower than in the reanalyses (one month on average).

Resulting ENSO teleconnection

As a consequence, in the models the WAM is mainly influenced by:

As a consequence, in the models the WAM is mainly influenced by:

• The **beginning** of ENSO events (in 4 models)

Lag-correlations: JAS rainfall vs ENSO index

As a consequence, in the models the WAM is mainly influenced by:

- The **beginning** of ENSO events (in 4 models)
- The ending of ENSO events (in 6 models)

Lag-correlations: JAS rainfall vs ENSO index

Resulting ENSO teleconnection

As a consequence, in the models the WAM is mainly influenced by:

- The **beginning** of ENSO events (in 4 models)
- The **ending** of ENSO events (in 6 models)
- In 2 models this is unclear...

Resulting ENSO teleconnection

As a consequence, in the models the WAM is mainly influenced by:

- The **beginning** of ENSO events (in 4 models)
- The ending of ENSO events (in 6 models)
- In 2 models this is unclear...
- In 4 models there is no significant teleconnection!

- 1 The observed ENSO teleconnection
- 2 The ENSO teleconnection in IPCC-AR4 simulations Onset of ENSO events Time-lag of the atmospheric response over Africa Resulting ENSO teleconnection

Because the WAM occurs in the **boreal summer**, the influence of the ENSO strongly depends on:

Because the WAM occurs in the **boreal summer**, the influence of the ENSO strongly depends on:

1 The timing of ENSO onsets,

Because the WAM occurs in the **boreal summer**, the influence of the ENSO strongly depends on:

- 1 The timing of ENSO onsets,
- 2 The time-lag of the atmospheric response.

Because the WAM occurs in the **boreal summer**, the influence of the ENSO strongly depends on:

- 1 The timing of ENSO onsets,
- 2 The time-lag of the atmospheric response.
- ▶ We have shown that these temporal aspects are reproduced with difficulty in state-of-the-art coupled models.

Because the WAM occurs in the **boreal summer**, the influence of the ENSO strongly depends on:

- 1 The timing of ENSO onsets,
- 2 The time-lag of the atmospheric response.

▶ We have shown that these temporal aspects are reproduced with difficulty in state-of-the-art coupled models.

Beyond these "timing" issues...

Very few models simulate correctly the response of **WAM rainfall** (sign and patterns) to ENSO-related atmospheric anomalies.

Thank you!

[mathieu.joly@meteo.fr]

